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Abstract

Automatic differentiation (AD) is used to perform a multiple parameter sensitiv-
ity analysis for the Los Alamos sea-ice model CICE. Numerical experiments are
run by six-hourly, 1997 forcing data with a two-hour time step, and the AD-based
sensitivity scheme is validated by comparison with derivatives calculated using the
conventional finite-difference approach. Twenty-two thermodynamic and dynamic
parameters are selected for simultaneous analysis. Of these, the most important
for controlling the simulated average sea-ice thickness is ice density; albedos and
emissivity predominate in summer, while ice thickness is most sensitive to the ice
conductivity in winter. The ice-ocean drag parameter and maximum ice salinity
significantly affect the simulation year-round. Gradient information computed by
the AD-based sea-ice code is then used in an experiment designed to assess the
efficacy of this technique for tuning the parameters against observational data. Pre-
liminary results, obtained with a bound-constrained minimization method and with
simulated observational data, show that satisfactory convergence is obtained.

Key words: sea-ice model, automatic differentiation, parameter sensitivity, ice
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1 Introduction

Seasonal sea-ice changes in the polar regions play an important role in the
global climate system. Sea ice in the Arctic and Antarctic acts as a power-
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ful insulating boundary layer, reducing the atmosphere-ocean heat exchange
and reflecting incoming solar radiation. In greenhouse gas response experi-
ments, researchers have observed enhanced warming caused by the thinning
and complete disappearance of sea ice (Holland and Bitz, 2003).

Various thermodynamic and dynamic models have been developed to under-
stand the physical mechanisms of sea ice and their role in global climate.
Models provide useful information about sea-ice variables such as ice thickness,
concentration, and horizontal velocity. Vertical ice growth rates are computed
based on a thermodynamic energy balance that depends on ice temperature
and on atmosphere and ocean forcing. The ice velocity is computed by inte-
grating a two-dimensional momentum balance equation and then is used to
determine ice transport and ridging.

These models include a number of thermodynamic and dynamic parameters
that introduce substantial uncertainty. Rothrock et al. (2003) compiled pub-
lished ice thickness predictions from eight different models for the period 1987–
1997 and found large discrepancies among the results. To assess the possible
impact of model parameters on simulation results, researchers have conducted
a broad range of parametric sensitivity studies. Early sensitivity studies in-
clude the works of Maykut and Untersteiner (1971) and Semtner (1976) using
one-dimensional, thermodynamic sea-ice models. Other researchers have cou-
pled sea-ice dynamics with a thermodynamic model and carried out sensitiv-
ity analyses (Parkinson and Washington, 1979; Holland et al., 1993; Chapman
et al., 1994; Harder and Fischer, 1999; Kreyscher et al., 2000; Miller et al.,
2005). Parametizations range widely, covering numerical algorithms, physi-
cal sea-ice processes, and various implementations for surface forcing by the
atmosphere and ocean. Specific parameters usually include atmosphere and
ocean drag coefficients, an ice strength proportionality constant, and albedos,
because these are believed to be the most influential for sea ice. Some stud-
ies incorporate a dozen or more parameters in various combinations (Holland
et al., 1993; Chapman et al., 1994), requiring numerous simulations.

In recent work, Miller et al. (2005) optimized three sea-ice model parameters
over the Arctic basin using CICE, the Los Alamos sea-ice model used here.
They chose the atmospheric drag coefficient, the ice strength proportionality
constant, and the cold, bare ice albedo. To obtain a unique triplet of opti-
mized parameter values, they needed three sets of basin wide observations:
Arctic ice extent, thickness, and velocity. They found that the resulting op-
timal values were interdependent—the optimal albedo depended on the ice
strength constant, and so on. This study and the many earlier ones highlight
two important points: the parameters need to be varied simultaneously to ob-
tain optimal values, and identifying which parameters are most important for
the simulation is not trivial.
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In these previous experiments, sensitivity of a model variable such as thickness
or velocity was not computed explicitly as a derivative of the variable with
respect to the parameter, but rather was asessed by net change in the model
solution. Sensitivities can be calculated by the finite difference (FD) method,
which obtains derivatives by dividing the response perturbation by the input
parameter variation, but truncation errors in this procedure can lead to er-
roneous derivatives. Furthermore, FD can be computationally costly because
of the necessity of repeated runs. In this paper, we present an automatic
differentiation (AD) technique as an alternative, which computes analytical
derivatives within the sea-ice code. The AD code enables us to determine
the sensitivities of the CICE model output variables to any given indepen-
dent input parameters, simultaneously. Based on the AD-generated sensitiv-
ity data, we then develop a parameter-tuning scheme to maximize agreement
between observed data and the simulation results. This study is intended to
help climate modelers objectively identify important modeling parameters for
designing optimized versions of sea-ice models.

Following a brief discussion of the model (Section 2) and the implementation
scheme (Section 3), we discuss the numerical experiments used to evaluate
the sensitivities (Section 4) and present the inverse modeling experiment. We
conclude with a brief description of future work (Section 5).

2 Model Description

The major components of CICE are the thermodynamics, dynamics, and hori-
zontal transport routines, which describe the physical state and motion of five
ice thickness categories (each with four ice layers and one snow layer). The
governing equations for each modeling component are solved on a generalized
orthogonal grid by using an explicit time-step procedure. We summarize the
main elements of the formulation here, identifying the parameters used in the
numerical sensitivity experiments. A complete description of the sea-ice model
used in this study, CICE version 3.1, can be found in Hunke and Lipscomb
(2004).

2.1 Thermodynamic Parameters

In the thermodynamic portion of the model, an energy balance of radiative,
turbulent, and conductive heat fluxes in each grid cell determines the temper-
ature profile and thickness changes of ice and snow. The net energy flux from

3



the atmosphere to the ice (with all fluxes defined as positive downward) is

F◦ = Fs + Fl + εFL↓ + FL↑ + (1− α)(1− i◦)Fsw, (1)

where Fs is the sensible heat flux, Fl is the latent heat flux, FL↓ is the incoming
longwave flux, FL↑ is the outgoing longwave flux, Fsw is the incoming shortwave
flux, α is the shortwave albedo, and i◦ is the fraction of absorbed shortwave
flux that penetrates into the ice.

Fs, Fl, and FL↑ are functions of the ice surface temperature Tsf ; Equation (1)
is inverted to obtain Tsf . For instance, outgoing longwave radiation takes the
standard blackbody form, FL↑ = −εσ (Tsf )

4, where ε = 0.95 (Briegleb, 1992)
is the emissivity of snow or ice, σ is the Stefan-Boltzmann constant, and Tsf

is the surface temperature in Kelvin. The sensible and latent heat fluxes are
computed by using standard bulk formulas with a turbulence-based formula-
tion for their exchange coefficients that depends on wind speed and stability of
the atmospheric boundary layer. The minimum wind speed parameter, umin,
maintains finite sensible and latent heat fluxes when the wind is calm.

Total shortwave radiation impinging on the ice, Fsw, is divided three ways: a
portion that is reflected, −αFsw; a portion that penetrates into the interior
of the ice, i◦(1 − α)Fsw; and the remainder that is absorbed at the ice or
snow surface. The net absorbed flux, (1 − α)Fsw, is actually a summation
over two different radiative quantities (visible and near-infrared) for incoming
shortwave with two corresponding albedos for each surface type (snow and
ice). For Tsf < −1◦C 1 and ice thickness hi > hm = 0.5 m, the standard bare
ice albedo is αiv = 0.78 for visible wavelengths (< 700 nm) and αin = 0.36 for
near-infrared (IR) wavelengths (> 700 nm). As hi decreases from 0.5 m to zero,
the ice albedo declines nonlinearly to the ocean albedo, 0.06. The ice albedo
in both spectral bands decreases by 0.075 as Tsf rises from −1◦C to 0◦C. The
albedo of cold snow (Tsf < −1◦C) is αsv = 0.98 for visible wavelengths and
αsn = 0.70 for near-IR wavelengths. The visible snow albedo decreases by 0.10
and the near-IR albedo by 0.15 as Tsf increases from −1◦C to 0◦C. Thus the
albedo depends on the temperature and thickness of ice and snow as well as
on the spectral distribution of the incoming solar radiation.

The flux of nonreflected shortwave radiation penetrating into the ice is I◦ =
i◦(1− α)Fsw, where i◦ = ic (1− fsnow) and ic = 0.70 for visible radiation and
0 for near-IR radiation. The snow area fraction fsnow depends on the snow
depth, ranging from zero where there is no snow to near 1 for very deep snow.
Radiation penetrating into the ice is attenuated according to Beer’s law:

I(z) = I◦ exp(−κiz), (2)

1 This value is −5◦C in CICE version 3.0.1 used by Miller et al. (2005).
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where I(z) is the shortwave flux that reaches depth z beneath the surface with-
out being absorbed and κi is the bulk extinction coefficient for solar radiation
in ice, set to 1.4 m−1 for visible wavelengths (Ebert et al., 1995). A fraction
exp(−κihi) of the penetrating solar radiation passes all the way through the
ice to the ocean.

The rate of temperature change in the ice interior is given by Maykut and
Untersteiner (1971):

ρici
∂Ti

∂t
=

∂

∂z

(

ki
∂Ti

∂z

)

− ∂I

∂z
, (3)

where ρi = 917 kg/m3 is the sea-ice density (assumed to be uniform), ci is the
specific heat of sea ice, ki is the thermal conductivity of sea ice, and z is the
vertical coordinate, defined to be positive downward with z = 0 at the top
surface.

Following Untersteiner (1964), the thermal conductivity is given by

ki(T, S) = k◦ +
βS

T
, (4)

where k◦ = 2.03 W/m/deg is the conductivity of fresh ice, β = 0.13 W/m/psu
is an empirical constant, S is the ice salinity, and the temperature T is in ◦C
in this formula. The specific heat of sea ice also depends on both T and S.

The corresponding equation for the temperature change in snow is

ρscs
∂Ts

∂t
=

∂

∂z

(

ks
∂Ts

∂z

)

, (5)

where ρs = 330 kg/m3 is the snow density (assumed uniform), cs is the specific
heat of snow, and ks = 0.30 W/m/deg is the thermal conductivity of snow.
Penetrating solar radiation is neglected in (5) because most of the incoming
sunlight is absorbed near the top surface when snow is present.

The salinity profile varies from S = 0 at the top surface (z = 0) to S = Smax

at the bottom surface (z = 1) and is similar to that used by Maykut and
Untersteiner (1971).

An equation similar to (1) applies at the bottom of the ice. The net downward
heat flux from the ice to the ocean is given by Maykut and McPhee (1995):

Fbot = −ρwcwchu∗(Tw − Tf ), (6)
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where ρw is the density of seawater, cw is the specific heat of seawater, ch =
0.006 is a heat transfer coefficient, Tw is the sea surface temperature, Tf is

the salinity-dependent freezing temperature, and u∗ =
√

|(τw| /ρw is the fric-
tion velocity used under melting conditions. Under freezing conditions, Fbot

represents a potential to freeze ice, with chu∗ replaced by hmix/∆t. Here, hmix

is the mixed layer depth, and ∆t is the model time step.

Ablation or accretion at the bottom of the ice is given by

∂h

∂t
=

Fcond − Fbot

q
, (7)

where

q = −ρi

[
c◦ (Tm − T ) + L◦

(
1− Tm

T

)
− cwTm

]
< 0, (8)

c◦ is the specific heat of fresh ice, L◦ is the latent heat of fusion of fresh ice,
and Tm is the salinity-dependent melting temperature. A similar relation holds
for melting at the top of the ice or snow.

2.2 Dynamics and Ridging Parameters

Ice motion and deformation are determined by balancing five major stresses:
wind stress from the atmosphere, water stress from the interaction between
ice and ocean, Coriolis force, the stress from the tilt of the ocean surface,
and the internal ice stress. A momentum balance equation is solved to obtain
the ice velocity in each grid cell, using the elastic-viscous-plastic (EVP) rhe-
ology (Hunke and Dukowicz, 2002) to relate the internal ice stress and the
rates of strain. The ice strength (or pressure, P ) is determined by an energy-
based ridging scheme (Rothrock, 1975; Hibler, 1980) and used in the EVP ice
dynamics component to compute the internal ice stress.

The surface layer currents, (Uw, are used to determine the stress between the
ocean and the ice. This stress takes the form

(τw = cwρw

∣∣∣(Uw − (u
∣∣∣
(
(Uw − (u

)
. (9)

In the sensitivity experiments below, cwρw is treated as a single parameter,
Dw.

The elastic modulus is defined in terms of a damping timescale T for elastic
waves such that T = E◦∆t; E◦ is a tunable parameter less than one.
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Along with the velocity field, we compute the strain rates, or deformation, of
the ice. Ice divergence and convergence cause the ice to ridge (we use “ridging”
as shorthand for all forms of mechanical redistribution). Thin ice is converted
to thick, ridged ice in a way that reduces the total ice area while conserving ice
volume and internal energy. A weighting function b(h) favors ridging of thin
ice and closing of open water in preference to ridging of thicker ice. Following
Thorndike et al. (1975), we set

b(h) =






2
G∗ (1− G(h)

G∗ ) if G(h) < G∗

0 otherwise,
(10)

where G(h) is the fractional area covered by ice thinner than h and where
G∗ is an empirical constant. If the open water fraction is greater than G∗, no
ice can ridge because ridging simply reduces the area of open water. As in
Thorndike et al. (1975) we set G∗ = 0.15.

Following Hibler (1980), ridging ice of thickness h forms ridges whose area is
distributed uniformly between Hmin = 2h and Hmax = 2

√
H∗h. The default

value of H∗ in CICE is 25 m, although it is taken to be 100 m in other models
(Flato and Hibler, 1995; Bitz et al., 2001; Briegleb et al., 2004). This ridged
ice distribution effectively causes the ice strength to scale as P ∼ h3/2. Larger
values of G∗ allow thicker ice to participate in ridging, thereby increasing the
ice strength.

Cs is the fraction of shear dissipation energy that contributes to ridge building.
Another empirical parameter, Cf , accounts for frictional energy dissipation.
Following Flato and Hibler (1995), we set Cs = 0.25 and Cf = 17. Finally,
when ice ridges, a fraction of the snow is thrown into the ocean, while the rest,
Fsrdg, remains on top of the ridged ice.

2.3 Unavailable Parameters

Most previous parameter sensitivity analyses for sea-ice models have included
an air-ice drag coefficient and an ice strength proportionality constant (univer-
sally notated P ∗ following Hibler (1979)), including the study by Miller et al.
(2005) using an older version of CICE. These parameters are not used in the
current version of CICE. We use the energetics-based ice strength formulation
described above, which closely corresponds with our ridging scheme, rather
than the simpler, empirical ice strength parameterization of Hibler (1979).

Likewise, rather than specifying a constant air-ice drag coefficient, CICE com-
putes a variable drag coefficient whose value depends on the stability of the
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Table 1
Model parameters chosen for sensitivity testing via automatic differentiation, listed
in the order in which they appear in the text.
Parameter Description Value

Thermodynamic Parameters
ε emissivity of snow and ice 0.95

umin minimum wind speed for turbulent fluxes 1 m/s
αiv visible ice albedo 0.78
αin near-IR ice albedo 0.36
αsv visible cold snow albedo 0.98
αsn near-IR snow albedo 0.70
ic penetrating fraction of visible solar radiation 0.7
κi visible extinction coefficient in ice 1.4 m−1

ρi ice density 917 kg/m3

β T , S proportionality constant in conductivity 0.13 W/m/psu
k◦ thermal conductivity of fresh ice 2.03 W/m/deg
ρs snow density 330 kg/m3

ks thermal conductivity of snow 0.30 W/m/deg
Smax maximum salinity, at ice base 3.2 psu
hmix ocean mixed-layer depth 20 m

Dynamic Parameters
Dw drag parameter for water on ice 0.00536 * 1026 kg/m3

E◦ ratio of damping time scale to time step 0.36
G∗ fractional area participating in ridging 0.15
H∗ determines mean thickness of ridged ice 25 m
Cs fraction of shear energy contributing to ridging 0.25
Cf ratio of ridging work to PE change in ridging 17.

Fsrdg snow fraction that survives in ridging 0.5

atmosphere. Stössel (1992) found that including the stability dependence im-
proved his results. Analogous, parallel formulations are used to determine tur-
bulent exchange coefficients for latent and sensible heat fluxes simultaneously
with the air-ice drag coefficient. There are nearly 20 parameters in the atmo-
spheric boundary layer description alone, although many are well constrained
by observations. We include only one parameter (umin) from this parameter-
ization in the sensitivity analysis discussed below. Our chosen parameters,
listed in Table 1, pertain primarily to the ice physics and associated numeri-
cal formulations rather than to the forcing; however, such a line is not easily
drawn.
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3 AD-based Implementation Scheme

Automatic differentiation is an alternative to the conventional FD method
for model sensitivity analysis. AD relies on the fact that the derivatives of a
function, no matter how complicated, can be computed by repeatedly applying
the chain rule of derivative calculus to the sequential elementary operations
of a coded function. For example, if a function f is computed through the
elementary functional operations y(x) and z(x), the chain rule can be applied
to compute the partial derivative of f with respect to the independent variable
x as follows:

∂f(y, z)

∂x
=

∂f

∂y

∂y

∂x
+

∂f

∂z

∂z

∂x
, (11)

By applying the chain rule repeatedly, we can compute analytical derivatives
of any computational function, because the computer code representing the
function is the composite of elementary operations. Note that AD allows aug-
menting any computer program written in Fortran, C, or C++ for derivative
computations (Bischof et al., 1996).

Various implementation techniques for AD processing have been developed.
Juedes (1991) provides an extensive survey of available AD tools. The two
basic implementation approaches are referred to as the forward and reverse
modes. In the forward mode, derivatives of intermediate functional values are
computed with respect to the input primary parameters. It is known from the
linearity of differentiation that the computational effort required in this mode
is approximately dependent on the number of input parameters multiplied by
the runtime and memory of the original program.

In the reverse mode, AD propagates derivatives of the final result with respect
to intermediate quantities known as adjoints. The program flow is reversed in
order to be able to keep all of the adjoints that affect the final result. Because
intermediate values must be stored or recomputed, however it is difficult to
estimate the storage requirement using the reverse mode. Recent AD research
has therefore centered on hybrid modes, which combine the best features of
the forward and reverse modes.

In this study, we use the ADIFOR tool (Bischof et al., 1996) developed by
Argonne National Laboratory and Rice University, which employs a hybrid
forward/reverse mode approach to generate derivatives. Given a function com-
putation in Fortran and a control description of which variables correspond to
independent and dependent parameters, ADIFOR produces portable Fortran
code that computes the partial derivatives of the dependent variables with
respect to the independent variables.
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The ADIFOR product code can be linked with a minimization algorithm for
determining the optimal sea-ice model parameters, thus providing accurately
tuned parameters based on observational data. In this study, a quasi-Newton
method was tested for its ability to optimize model parameters. This method,
the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-
B), is described by Zhu et al. (1994). To avoid numerically unstable simulation
results, we initially constrain each parameter to an acceptable range. The
objective function (or cost function) and its gradient information required
by the L-BFGS-B algorithm are provided by the ADIFOR-processed CICE
code. We test the convergence of this formulation using simulated ice thickness
data, in preparation for tuning the parameters with thickness data based on
observations.

Automatic differentiation techniques have been used to analyze parameter
sensitivities in atmosphere and ocean models (Park and Droegemeier, 1999;
Slawig and Zickfeld, 2004; Kioutsioukis et al., 2005; Sandu et al., 2005). In the
following section, we present the results of our sensitivity analysis and proof
of concept for our parameter-tuning implementation. To our knowledge, this
is the first simultaneous parameter sensitivity analysis performed on a sea-ice
model using automatic differentiation.

4 Numerical Results

4.1 Experiment Design

The CICE model experiments discussed below are performed on a coarse global
grid (3◦) that includes both polar regions. Atmospheric forcing fields for 1997
are interpolated to the two-hour time step. This data includes six-hourly, 10 m
data for air temperature, air density, specific humidity, and wind velocity
from the National Centers for Environmental Prediction (NCEP) reanalyses
(Kalnay et al., 1996), International Satellite Cloud Climatology Project (IS-
CCP) (Rossow and Schiffer, 1991) monthly downward shortwave radiation flux
and cloud fraction, and monthly precipitation fields (MSU) (Spencer, 1993).
The model is initialized with a 35-year spin-up using the 1997 forcing data.
The resulting ice thickness, concentration, and velocity fields on January 1
are used as the initial state for the experiments described in the following
subsections.
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Fig. 1. Comparison of AD and FD derivates for different FD step sizes (∆αiv).

4.2 Validation

The AD-augmented CICE code was validated by comparing the AD-computed
derivatives with the finite difference results, differentiating the ice thickness
in central Arctic with respect to the visible ice albedo αiv after one week.
Differences between the AD and FD derivatives are summarized in Fig. 1 for
various step sizes used to compute the FD derivatives. Numerical errors in
the FD derivatives, particularly for small step sizes, are associated with trun-
cation of the Taylor expansion and cancellation in subtraction of very small
floating-point numbers. Truncation in the AD derivative calculation is elimi-
nated because all the partial derivatives of elementary functional operations
can be computed analytically. Good agreement between the AD and FD re-
sults over a large range of step sizes indicates that the AD approach using
ADIFOR is working correctly for the CICE model code.

4.3 AD Sensitivity Experiment

The sensitivity experiment is carried out with respect to a primary dependent
variable, average ice thickness (or more precisely, ice volume per unit area),
at three locations: the central Arctic (90 N), Fram Strait (79 N, 6 W), and
Weddell Sea (70 S, 40 W). Based on the dynamic and thermodynamic ice
model described in Section 2, 22 parameters were identified for testing. Table 1
lists these independent variables with the standard values used in CICE.

The results of the AD sensitivity experiment are summarized in Figs. 2–4 and
Table 2. Derivatives (or “sensitivities”) of the average ice thickness at three
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Fig. 2. Time series of ice thickness (right axis, m) and nondimensionalized ice density
sensitivity (left axis).

different locations, with respect to each of the test parameters, were calculated
by using the AD-processed code and then were nondimensionalized by using
the average thickness for the analysis time period (Fig. 2) and the standard
parameter values. That is, Table 2 and Figs. 2–4 give

p

h̄

∂h

∂p

for parameters p. Table 2 lists 12-month sums of sensitivity magnitudes for
each of the 22 parameters, with larger values indicating greater sensitivity.
Figure 2 illustrates the seasonal variability of the parameter sensitivity with
the greatest values, the ice density ρi, and Figs. 3–4 show time series for the
remaining parameters whose sum over all months and all three grid points are
greatest. Each individual value represents an average over the first week of the
month. The sums in Table 2 are of the magnitudes of the derivatives and thus
are proportional to the total area under the timeseries curves in Figs. 2–4.

Ice density dominates the sensitivity analysis, but this sensitivity is largely an
artifact of the way density is treated in the code. The model state variables
are area A, volume V , and internal energy e, with thickness h and enthalpy
q diagnosed as V/A and e/V , respectively. Temperature T is diagnosed from
q by using (8). Thus, an initial increase in ρi for a given q is associated with
a smaller value of the specific heat of melting (the bracketed term on the
right-nad side of Eq. 8) and a higher temperature. This unphysical warming
reduces winter ice growth and, to a lesser extent, increases summer melting. It
is necessary to run the model for several years with a modified ρi to determine
the true sensitivity of the thickness to ice density. Such an experiment is
discussed in the next section.

The other parameters produce more intuitive results (Figs. 3–4). For instance,
in the summer months (July–September in the central Arctic, December–
February in the Weddell Sea, June in Fram Strait before the grid cell becomes
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Fig. 3. Time series of nondimensionalized AD derivatives, for the 11 most important
thermodynamic parameters from Table 2. Parameters are listed in decreasing order
of importance (averaged over all months and the 3 grid points) in the legend; αin

and αsn sensitivities are slightly less than those for αiv and αsv, respectively, but
are not different enough to warrant plotting separately. Time series of the remaining
thermodynamic parameters are not distinguishable from zero here. The grid cell in
Fram Strait is essentially ice-free July–October; because zero thicknesses cause the
nondimensionalized sensitivity values to be infinite, we have set them to zero.

ice-free), radiative parameters play the greatest role in determining the ice
volume. Emissivity ε is the most important radiative parameter overall, re-
flecting the importance of net longwave, Fnet = ε

(
FL↓ − σT 4

sf

)
, in the surface

flux balance of Eq. 1. Increasing ε increases the negative magnitude of Fnet

(positive downward), thus cooling and thickening the ice.
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Fig. 4. As in Fig. 3, for the 4 most important dynamics parameters from Table 2.

Albedos vie for importance based on the strength of solar radiation. Visible
and near-IR snow albedos (αsv and αsn) are prominent in spring in the central
Arctic, when the ice is still snow-covered, but by later in the summer the ice
albedos αin and αiv predominate. The fraction of visible solar radiation that
penetrates into the ice also influences the ice volume during central Arctic
summer months. Snow albedos prevail over ice albedos in the Weddell Sea,
reflecting the fact that ice in the region remains snow-covered throughout the
summer. Ice thickness in the Weddell Sea is also less sensitive to emissivity
than is Northern Hemisphere sea ice.

The most influential parameters in winter are snow and ice conductivities and
Smax, the maximum salinity, which also affects the ice conductivity (Eq. 4)
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Table 2
Magnitudes of AD sensitivities, summed over the 12 months for each test point.
The “Total” column gives the sum over 12 months and all three points; time series
of the parameters with largest total values are shown in Fig. 3–4.

Parameter Central Arctic Fram Strait Weddell Sea Total
Thermodynamic Parameters

ε 1.2886E-01 1.8745E-01 4.5160E-02 3.6147E-01
umin 4.7376E-04 3.1519E-04 5.0220E-04 1.2911E-03
αiv 4.6819E-02 9.5705E-03 6.4883E-03 6.2878E-02
αin 4.2833E-02 3.2537E-03 3.1728E-03 4.9259E-02
αsv 1.5922E-02 1.2030E-02 4.3442E-02 7.1394E-02
αsn 9.7470E-03 4.0040E-03 2.9042E-02 4.2793E-02
ic 2.1975E-02 1.9268E-03 2.1338E-03 2.6035E-02
κi 4.1383E-03 5.4852E-04 1.9862E-04 4.8854E-03
ρi 1.8593E+00 2.0759E+00 1.8791E+00 5.8144E+00
β 6.0095E-03 8.0442E-03 4.9687E-03 1.9022E-02
k◦ 9.6795E-02 1.3585E-01 8.0720E-02 3.1337E-01
ρs 3.3574E-02 6.6670E-02 6.3792E-02 1.6404E-01
ks 1.8908E-02 6.4876E-02 5.8382E-03 8.9622E-02

Smax 9.3055E-02 1.1834E-01 7.3554E-02 2.8495E-01
hmix 1.8141E-03 3.0620E-02 1.7654E-03 3.4199E-02

Dynamic Parameters
Dw 8.5642E-02 1.5489E-01 8.6769E-02 3.2730E-01
E◦ 4.3678E-04 4.2895E-04 2.9319E-04 1.1589E-03
G∗ 2.3963E-02 1.6827E-02 3.6584E-02 7.7375E-02
H∗ 1.3703E-02 6.5809E-03 3.2946E-02 5.3230E-02
Cs 1.3379E-03 2.0138E-03 8.0453E-04 4.1561E-03
Cf 2.4109E-02 1.2392E-02 5.7342E-02 9.3843E-02

Fsrdg 4.9359E-04 1.3721E-03 1.0408E-03 2.9065E-03

and melting or freezing at the ice-ocean interface. When the conductivity is
larger, heat is more readily transferred upward through the ice, allowing faster
growth at the bottom surface. Smax plays a prominent role year-round, in all
three regions, with a moderate sensitivity of 0.01.

Four of the dynamics parameters are listed among the 15 most influential pa-
rameters; except for the ocean drag parameter, all have sensitivities of 0.01
or less. The drag coefficient is another parameter that is important all year,
with sensitivity magnitudes among the highest of this 22-parameter set (it is
third most influential, following ρi and ε). This result corroborates the param-
eter selections of numerous previous sensitivity studies. Our only parameter
related to the atmosphere-ice drag coefficient, umin, places very low. Likewise,
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the least important dynamics parameters are the EVP parameter E◦ and two
parameters related to the ridging scheme, Fsrdg and Cs (Table 2).

It is heartening that many of the parameters lacking strong physical con-
straints are relatively unimportant to the model’s physical solution. For in-
stance, the addition of elastic waves to the viscous-plastic rheology was in-
tended only as a numerical artifice for making the code more efficient; thus
we would not expect E◦ to significantly affect the solution. Among thermody-
namic parameters in this sensitivity study, the least important overall are β,
the salinity/temperature proportionality constant in the formula for ice con-
ductivity (Eq. 4), the extinction coefficient κi, and the minimum wind speed
used to compute turbulent fluxes over the ice and snow, umin.

From this analysis we see that parameters affecting the conductivity and ra-
diative absorption are of paramount importance for simulating ice volume in
the sea-ice model; with the exception of Dw, dynamics and ridging parameters
are less important than the thermodynamic parameters. If we were using ice
velocity as the dependent variable, however, the dynamics parameters would
be more prominent.

4.4 Single Parameteric Sensitivities

We have also assessed the model’s robustness to individual modeling parame-
ters. Several of these single-parametric sensitivity results are shown in Fig. 5,
for the central Arctic. For instance, Fig. 5a and b demonstrate that increasing
(decreasing) the ice albedo or conductivity results in thicker (thinner) ice.

Figure 5 also illustrates how a long-term simulation may exhibit unexpected
sensitivity to parameters such as ice and snow density, which may not be
reflected in the AD sensitivities. For instance, decreased ice density increases
the ice thickness during the first two winters of the simulation. However, an
eventual decrease of ice thickness is observed as the simulation continues over
five years, associated with increasing summer melt that eventually dominates
ice growth in winter. A decrease in the snow density that initially produces
little response in ice thickness leads to decreased ice thickness after the first
summer. The magnitude of the change by year 5 is comparable to the change
given by the ice density.

4.5 Parameter Tuning Proof of Concept

As described in Section 2, the sea-ice model relies strongly on the interplay
between dynamic and thermodynamic processes. While it is possible to obtain
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Fig. 5. Single-parameteric sensitivity results for five-year runs with standard and
perturbed parameter values. (a) near-IR ice albedo, αin, (b) fresh ice conductivity,
k◦, (c) ice density, ρi, (d) snow density, ρs.

realistic values of one field through compensating errors, it is difficult to obtain
realistic values of all variables at all grid points. Optimal model parameters can
be obtained, however, given sufficient, accurate observations. By “sufficient”
we refer to the number of degrees of freedom available in the observations;
no more parameters may be optimized than the degrees of freedom in the
observational data. Here we demonstrate that AD parameter optimization
methods can be successfully applied to the CICE code.

The parameter-tuning process couples the derivative code generated by ADI-
FOR with a quasi-Newton minimization code. We used the bound-constrained,
limited-memory BFGS method, which minimizes a nonlinear function of n
variables subject to lower and upper bounds on the variables. The derivatives
of the cost function are computed by the AD-processed sea-ice modeling code
and provided to the L-BFGS-B routine.

To test the viability of this approach, we first applied our technique to a
simulated set of observation data: the model was run with known parameter
values for k◦, ρi, and Smax for one week, and the simulation results of average
ice thickness at the North Pole were stored as observations. We tested the
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Fig. 6. Convergence behavior of (a) the optimization algorithm and (b) each of the
parameters being tuned (parameter values are normalized). Two different step sizes
were used for the FD tests in (a).

optimization method against this simulated observational data, using initial
guesses for the three test parameters that were 10% smaller. Figure 6 shows
the convergence behavior of the optimization algorithm and the convergence
progress of each parameter in the optimization test. Upon convergence, the
optimal parameter values are recovered to within three significant digits. More-
over, Fig. 6a indicates that AD-generated gradients provide faster convergence
behavior in the tuning process than does the FD approach.
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5 Discussion

For this study we choose average ice thickness, that is, the ice volume per unit
area, as the dependent variable because it represents the integrated evolution
of the ice pack through time and is critical for climate simulations, particularly
for the fresh water balance of the climate system. Sea-ice concentration also
plays a crucial role in Earth’s energy budget because of the insulating and
reflective properties of ice on the ocean surface; likewise, sea-ice velocity and
associated deformation fields direct the pack-ice evolution. Although we con-
sider only ice thickness in this paper, parameter sensitivites can be computed
for concentration, velocity, or any of the model’s prognostic variables.

By comparing automatic differentiation results with the FD method for dif-
ferentiating ice thickness, we have verified that the AD technique provides
an accurate sensitivity analysis of a multivariate sea-ice model, CICE. Over-
all, thermodynamic (radiative and conductivity) parameters strongly affect
the ice-thickness simulation, and the ice-ocean drag coefficient also plays an
important role.

Perhaps the most striking result from this study is the prominent sensitivity
of ice thickness to emissivity ε. This parameter has not been scrutinized in
sea-ice models. For instance, Ebert and Curry (1993) test the sensitivity of
their one-dimensional sea-ice thermodynamics model to longwave forcing but
do not vary the value of ε. Holland et al. (1993) consider ε in their set of
sensitivity runs but do not discuss their results. Our standard value of 0.95 is
somewhat lower than that typically used in models, 0.97–0.99, but there is no
general agreement on the best value. Furthermore, we use the same value for
both ice and snow, while differing values are likely warranted. Observations
made during the SHEBA program in the Arctic show significant variability
in emissivity at microwave frequencies, with values often near 0.9 and below
(Haggerty and Curry, 2001).

Model limitations likely contribute to under- or overestimates of sensitivi-
ties. Although CICE incorporates many recent advances in sea-ice modeling
techniques, parameterizations, and algorithms, its snow model remains rather
crude, with just one layer of snow and none of the more complex snow pro-
cesses such as phase changes, densification, grain growth, and melt ponds.
Parameter sensitivities in this model would probably change if the parameter-
izations were changed significantly; along the same lines, sensitivities in other
models will likely be different.

Single-parameteric sensitivity experiments show that the model sensitivity is
compounded during longer, multiple-year simulations and that feedback pro-
cesses can change even the sign of the sensitivity. Thus, it is desirable to tune
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the ice model by using an optimization process that simultaneously examines
parameters in all of the model components. Miller et al. (2005) used large-scale
observational data for Arctic ice thickness, concentration, and velocity to tune
just three parameters, requiring 168 model runs. In our preliminary tests of
the L-BFGS-B parameter-tuning algorithm, we find that the minimization
algorithm converges quickly, yielding multiple model parameters that match
those used to produce the simulated observational data, in just one run.

Our method presents difficulties of other sorts, however. We have found that
spatially sparse data, such as buoy or ship-track data, can significantly worsen
the sea-ice simulation, or even make it fail to converge. Furthermore, optimiz-
ing parameters based on different dependent variables (such as ice concentra-
tion or speed) may result in different parameter values. We expect that the
data required to tune the model parameters will need to be consistent in time
with the atmospheric forcing data that we apply to the model.

Miller et al. (2005) demonstrate that even with such difficulties, parameter op-
timization is possible. This study suggests which parameters should be tuned.
In future work, we plan to further explore CICE’s parameter space using the
best available data for both hemispheres, including satellite-derived ice con-
centration and ice deformation. Furthermore, we plan to parallelize the CICE
parameter-tuning algorithm using MPI protocols. This parallelization will al-
low us to tune the model using multidecadal and other long-term observational
data, which should yield parameter estimates suitable for climate simulations.
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